Jointly learning word embeddings using a corpus and a knowledge base
نویسندگان
چکیده
Methods for representing the meaning of words in vector spaces purely using the information distributed in text corpora have proved to be very valuable in various text mining and natural language processing (NLP) tasks. However, these methods still disregard the valuable semantic relational structure between words in co-occurring contexts. These beneficial semantic relational structures are contained in manually-created knowledge bases (KBs) such as ontologies and semantic lexicons, where the meanings of words are represented by defining the various relationships that exist among those words. We combine the knowledge in both a corpus and a KB to learn better word embeddings. Specifically, we propose a joint word representation learning method that uses the knowledge in the KBs, and simultaneously predicts the co-occurrences of two words in a corpus context. In particular, we use the corpus to define our objective function subject to the relational constrains derived from the KB. We further utilise the corpus co-occurrence statistics to propose two novel approaches, Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion (HNE), that dynamically expand the KB and therefore derive more constraints that guide the optimisation process. Our experimental results over a wide-range of benchmark tasks demonstrate that the proposed method statistically significantly improves the accuracy of the word embeddings learnt. It outperforms a corpus-only baseline and reports an improvement of a number of previously proposed methods that incorporate corpora and KBs in both semantic similarity prediction and word analogy detection tasks.
منابع مشابه
Joint Learning of Sense and Word Embeddings
Methods for learning lower-dimensional representations (embeddings) of words using unlabelled data have received a renewed interested due to their myriad success in various Natural Language Processing (NLP) tasks. However, despite their success, a common deficiency associated with most word embedding learning methods is that they learn a single representation for a word, ignoring the different ...
متن کاملEnriching Word Embeddings Using Knowledge Graph for Semantic Tagging in Conversational Dialog Systems
Unsupervised word embeddings provide rich linguistic and conceptual information about words. However, they may provide weak information about domain specific semantic relations for certain tasks such as semantic parsing of natural language queries, where such information about words can be valuable. To encode the prior knowledge about the semantic word relations, we present new method as follow...
متن کاملIncorporating Word Embeddings into Open Directory Project based Large-scale Classification
Recently, implicit representation models, such as embedding or deep learning, have been successfully adopted to text classification task due to their outstanding performance. However, these approaches are limited to smallor moderate-scale text classification. Explicit representation models are often used in a large-scale text classification, like the Open Directory Project (ODP)-based text clas...
متن کاملA Multi-task Learning Approach to Adapting Bilingual Word Embeddings for Cross-lingual Named Entity Recognition
We show how to adapt bilingual word embeddings (BWE’s) to bootstrap a crosslingual name-entity recognition (NER) system in a language with no labeled data. We assume a setting where we are given a comparable corpus with NER labels for the source language only; our goal is to build a NER model for the target language. The proposed multi-task model jointly trains bilingual word embeddings while o...
متن کاملKnowledge Graph and Text Jointly Embedding
We examine the embedding approach to reason new relational facts from a largescale knowledge graph and a text corpus. We propose a novel method of jointly embedding entities and words into the same continuous vector space. The embedding process attempts to preserve the relations between entities in the knowledge graph and the concurrences of words in the text corpus. Entity names and Wikipedia ...
متن کامل